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Abstract. We present systematically the solutions and the quasi-polynomial solutions for 
the Schrodinger equation with the xz+ A x 2 / (  1 + gx2) interaction potential with the help of 
the first Heun confluent equation or spheroidal Heun equation. 

1. Introduction 

In the present paper, we intend to investigate the solutions relative to singular points 
and polynomial and ‘quasi-polynomial’ solutions of the following one-dimensional 
Schrodinger equation 

(d2/dX2+E - V ( X ) ) ~ ( X ) = O  (1) 

V(x) = x2+ A x 2 / (  1 + gx’), 

with the interaction potential, 

-CO < x < +CO, 

E is the eigenparameter and A is a real number. With the intention of generalisation, 
contrary to the usual restraint [l-31, we do not put a restriction on the sign of the 
number g. 

As is well known [ 1-51 this type of potential-when g > &occurs in laser physics 
in the particular case of a toroidal plasma [7]. Moreover if g = -g,, with g, > 0 and 

However, there are cases for which the number g can take negative or imaginary 
values. This occurs when we take the differential equations in their canonical forms, 
namely the first Heun confluent equation or spheroidal Heun equation, e.g. in the 
description of a rotating bleck hole in general relativity [6] and for the electric field 
in the particular case of a toroidal plasma [7]. Moreover, if g = -gl ,  with g, > 0 and 
x=i t ,  (1) becomes 

[ $ - E - (  I ‘ + 5 ) l y ( l ) = O .  

This equation is formally the same as (1). As we shall see later the solutions of (2) 
which we study in this paper are, in spite of the above change of variables, all real. 

Many authors [ 1-51 using various either numerical or analytic techniques have 
studied the solutions of ( 1 ) .  The purpose of this paper is to present systematically the 
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solutions of (1) in the vicinity of each singularity and the polynomial and quasi- 
polynomial solutions of ( l ) ,  with the help of the confluent Heun function [8-lo]. Up 
to now it does not seem that this method-to the best of our knowledge-has been 
used. It is possible to use this method to solve equations of the same type as ( l ) ,  i.e. 
leading to any of the four forms of the confluent Heun function [9]. 

2. Heun’s confluent equation. Canonical form of equation (1) 

The Heun confluent equation has not been-to our knowledge-extensively studied 
in the literature. We do not know, for example, the integral representation and the 
analytic continuation of this Heun confluent function, but only integral equations for 
Heun confluent polynomials [8]. In both the case of the Heun equation and of the 
spheroidal wave equation [ll], the main difficulty lies in the fact that the series 
representing the solutions yields a three-term recurrence relation which is not easy to 
solve. Nevertheless, we will give solutions which may be written as terminating 
polynomials for suitable values of the parameters, without studying the case where 
the parameters verifies a transcendent relation [ 113. 

The Heun confluent equation with two regular singularities and an irregular singu- 
larity, at +a, may be written in the form, 

y”+ -+-+p)yt+- f f P z + p y = 0  (: Z S 1  z(z - 1) (3) 

where a, p, y ,  6, p are constants. 

[lo]. If 
A summary of the study and of the research of solutions of (3) may be found in 

we find immediately the recurrence relation for the coefficients of G (the Heun 
confluent function): 

According to the theory of the analytic functions, the series (4) is valid for IzI < 1,  
z = 1 being the nearest singular point, whatever the sign of g. Therefore it seems that 
the result expressed by Whitehead et al [3] on the validity of (4) is inexact. 

It should be noted that the rational character of the coefficients of equation (3) is 
conserved by transformations of the type 

y(z) = e ~ ’ z ^ ( z - I ) Y ~ ( ~ ) ,  (6) 

with the constants p, A, Y being suitably chosen in functions of the parameters a, p, 
y ,  6, p of equation (3)  [9]. 

These transformations form a group with eight parameters. This important property 
of the Heun confluent equation should be noted in order to seek the whole polynomial 
and quasi-polynomial solutions of equation (3). We retain later on equation ( 3 )  as 
the canonical form of the Heun confluent equation. 
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3. General solution of equation (1) relative to the three singular points 

We put y ( z )  = W ( z )  in ( 1 )  where z = -gx2. We obtain the canonical form of ( 1 )  

+ .)-=o W 
4g z ( z - 1 )  

this equation is of the form ( 3 ) ,  with 

P = l / g  

y = +  

6 =o .  

(Y = $ ( 1 -  E + A / g )  

p = ( E  - 1)/4g.  

(7 )  

3.1. General solution of equation (7) relative to the regular singular point z = 0 

W ( Z )  = A G ( p ;  (Y, P, y, 6 ;  z ) +  B z ’ - ~ G ( P ~ ;  1 + (Y - y, P, 2 -  ~ , 6 ;  Z )  (9) 

where A and B are two constants and 

P2 = P + ( 1  - Y) (6  - P ) ,  
a, P, y, 6, p are defined b y  (8). The solution (9) is valid for IzI < 1. 

3.2. General solution of equation (7) relative to the regular singular point, z = 1 

The substitution U = 1 - z reduces equation ( 7 )  to 

where W’ = d W / d u .  

Heun confluent function, has the form 
(a) The first particular solution of this equation, expressed with the help of the 

m 

W,( U )  = G( A/4g2;  a( 1 - E + A / g ) ,  - l / g ,  0, i ;  U )  = 1 h p ” ,  
n=O 

with the corresponding recurrence relation, 

ho = 0, 

( n + 2 ) ( n  + l )h ,+z - [ (n+ l ) ( n + + +  l / g ) + ~ / 4 g ~ I h , + ,  

h ,  = 1 ,  

+ ( l / g ) [  n +a( 1 - E + A / g ) ]  h, = 0. ( 1 1 )  

The series ( 1 1 )  converges for 1u1< 1, or Iz- 11 < 1. 
(b) The research of the second solution is not as easy as in the first case. The 

exponent difference in U = 0 being zero, this second solution involves generally a 
logarithmic term. 

We put W ( U ) = X ( U )  W,(u)  in (10) .  It follows that 
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We find immediately the first integral, 

K e0Ig X I = -  w: ( 1  - 

WI(U) = UY(U), 

where K is a constant. Taking account of ( l l ) ,  we put 

where 

y(u)  = 1 + h 2 u + .  . .. 
Equation (13 )  becomes thus, 

the function 

/ ( l - u ) 1 / 2  
1 g(U) = - eO’g 

Y 2  

is regular in U = 0 and therefore, 

g(u)=c0+c1u+c2u2+  . . .  

c, = ( l /n ! )g(n) (o) .  

where 

Thus equation (14) becomes, 

= K ( co/ U’ + cI / U + c2 + c3 U + . . .) 
and we find a solution x of the form, 

,y = K ( - co/ U + cI log U + c2u  + +c3 u2 + . . . + a ) 

where a is a constant, 

CO = g(0) = 1 c1 = g’(0) = -A/4g2. 

In (16) we see that a logarithmic case arises, unless c1 = 0, that is to say A = 0. Finally 
we obtain the second solution of (10) in the form 

33 

W,( U )  = Wl( U )  log U + k,un 
n=O 
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The constant a has been chosen in order to k,  = O .  Taking account of (11) and 
(17 ) ,  the general solution of (10 )  can be written 

W = A W,  + B W2. 

3.3. General solution of equation (7) relative to the irregular singular point at infinity 

We assume solutions of (7) in the form, 
53 

W = Z '  d,z-" with do # 0. 
n=O 

The point at infinity being an irregular singularity, we find only for s, the value 
s = -a ,  where (Y is given by (8). The recurrence relation which the coefficients di must 
satisfy is now 

Pd1- do[a (a  + 1 - y -  6 + P )  + p ] = O  

P(n+2)dn+,-d,+,[(a+ n +  l ) ( a + n + e - y - G + p ) + p ]  

+ d,[(a + n ) ( a  + n + 1 - y ) ]  = 0 

with do= 1. Returning to the x variable, and taking account of relations (8) we find 
a first solution of ( 1 )  in the form, 

we see that V a ,  the series ly,l converges at infinity. 
A second independent solution is given by 

y 2 ( z )  = e - P ' G ( p + p y ;  -a  + ~ + 6 ,  - P ,  Y ,  0; z ) ,  

where G is the Heun confluent function of the form ( 1 8 ) .  We find, 

or 

y 2 ( x )  = ex2/2(-gxZ)a-Y(l  - e , / g x 2 + .  . .) 
where 

- y z f c - 1 -  E + A/g). 
But this second solution y 2 ( x )  diverges at infinity. 

4. Polynomial and quasi-polynomial solutions of equation (7) at z = O  

Using the invariance property of the canonical form ( 7 )  we obtain the following 
solutions in the vicinity of z = 0 (x = 0) and consequently the polynomials and quasi- 
polynomial solutions: 
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y2(x)= e-x2/2(1+gx2)G 
E + 2 g - 1  1 

E - 3  1 

y4(x) = eCX2I2x( 1 + gx2) G 

E + l  1 

y6(x) = ex’”( 1 + gx’)G 
4g ’ 4  

ys(x) = ex2’2x( 1 + gx2)G 

Between these eight solutions, the following functional relations holds, 

Y l  =y2 = Y S  = Y6, Y3 = Y4 = Y7 = Ys. 

We note here the natural presence of factors 1 + gx’, already noted by Heading [ 5 ] ,  x 
or x( 1 + gx’) in some solutions. These factors do not introduce a simplification in the 
treatment of solutions. They change only the parameters of the corresponding Heun 
confluent function. 

(1) The recurrence relation for y, is the following 

2g2(n + 1)(2n + l )gn+l  -g[2n(2gn - g  -2)+ E - l]gn -[4g(n - 1)+  g - Eg+Alg,-l = 0 

g, can be written in the form 

where D, is the following tridiagonal determinant [3, 51 

D -  

[E - 11 [2XlXl]  O 

[ Eg - A - g] [E - 1 +2g -41 [2 x 2  x3] 

[2(n - 1)(2n - 3 ) ]  1 E - 1 + ( n  - 2 )  

Eg-A-g 
- ( n  -2)4g 1 E - l + ( n - I )  

x{4g(n+1)-10g-4} 

(2) The recurrence relation for y, is 

2g2(n + 1) (2n + 3)g,+, - g[2n(2gn + g - 2) + E - 3]g, 

-[4g( n - 1) + 3g - Eg+ h]g,-, = 0 
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with 

2441 

n = 0 , 1 , 2  ,..., g o = l  (- 1)"En 
gn =- gn(2n)! 

where E, is the following tridiagonal determinant, 

E, = 

[ E  -31 [2 x 1 x3] 0 

[ E g - A  -3g] [E-3+6g-4]  [2X2X5] 

3 E -3+ ( n  -2 )  
x(4gn - 6g - 4) 

1 Eg-A-3g E - 3 + ( n -  1) [ - ( n  -2 )4g l  [ x{4g(n + 1) -6g -4) 

The Heun confluent function G( p ;  Q, p, y, 6 ; z )  = Xze0  gnzn becomes a polynomial 
solution of doN,  if 

f f = - N  with N, integer 3 0 

gN+l = O  

gN+, being a polynomial of degree N + 1. 
These conditions lead us to consider two cases, whatever the sign of g, 

(1) -E + A/g<O 
(2) - E  + A/g> 0 

and in each of these cases, two types of fundamental solutions, 

- E + A / g = l  (mOd4) 

-E+A/g=3  (mod4) 

for the y ,  solutions, 

for the y ,  solutions. 

The corresponding solutions, for N = 0, 1,2, are listed in the table. 

5. Reality and sign of the roots of D,(A) = 0 

It is of physical interest to know if the roots of the polynomial form D,(A) = 0 are all 
real. 

On account of the correspondence between ( 2 )  and (1) we see immediately that- 
whatever the sign of y-using a lemma given by Arscott [ 111, the roots of D,(A) = 0 
are all real and different. On the other hand the result given by Whitehead [3] and 
Heading [ 5 ]  showing that the whole non-zero roots of & ( A )  = 0 are negative, no 
longer holds when g < 0. This fact can be verified directly for simple values of N. 

6. Conclusion 

In the present paper we have given a systematic preservation of the solutions of (1) 
relative to the singular points and the polynomial and quasi-polynomial solutions, 
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without restriction in the sign of g, knowing that the equation is, in fact, a Heun 
confluent equation. 

Of course, these results are already partly known. This method can be used with 
good purpose for other linear differential equations of mathematical physics, seeing 
that, in fact, these equations are, Heun confluent, biconfluent, double-confluent, or 
three-confluer. functions [9, 121. 
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